Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Am J Respir Cell Mol Biol ; 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2194472
2.
Am J Pathol ; 192(3): 454-467, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1588379

RESUMEN

Acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 and other etiologies results from injury to the alveolar epithelial cell (AEC) barrier resulting in noncardiogenic pulmonary edema, which causes acute respiratory failure; recovery requires epithelial regeneration. During physiological regeneration in mice, type 2 AECs (AEC2s) proliferate, exit the cell cycle, transiently assume a transitional state, then differentiate into type 1 AECs (AEC1s); in humans, persistence of the transitional state is associated with pulmonary fibrosis. It is unknown whether transitional cells emerge and differentiate into AEC1s without fibrosis in human ARDS and why transitional cells differentiate into AEC1s during physiological regeneration but persist in fibrosis. We hypothesized that incomplete but ongoing AEC1 differentiation from transitional cells without fibrosis may underlie persistent barrier permeability and acute respiratory failure in ARDS. Immunostaining of postmortem ARDS lungs revealed abundant transitional cells without fibrosis. They were typically cuboidal or partially spread, sometimes flat, and occasionally expressed AEC1 markers. Immunostaining and/or single-cell RNA sequencing revealed that transitional cells in mouse models of physiological regeneration, ARDS, and fibrosis express markers of cell cycle exit but only in fibrosis express a specific senescence marker. Thus, in severe, fatal early ARDS, AEC1 differentiation from transitional cells is incomplete, underlying persistent barrier permeability and respiratory failure but ongoing without fibrosis; senescence of transitional cells may be associated with pulmonary fibrosis.

3.
Eur Respir J ; 56(6)2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-841061

RESUMEN

Cellular senescence permanently arrests the replication of various cell types and contributes to age-associated diseases. In particular, cellular senescence may enhance chronic lung diseases including COPD and idiopathic pulmonary fibrosis. However, the role cellular senescence plays in the pathophysiology of acute inflammatory diseases, especially viral infections, is less well understood. There is evidence that cellular senescence prevents viral replication by increasing antiviral cytokines, but other evidence shows that senescence may enhance viral replication by downregulating antiviral signalling. Furthermore, cellular senescence leads to the secretion of inflammatory mediators, which may either promote host defence or exacerbate immune pathology during viral infections. In this Perspective article, we summarise how senescence contributes to physiology and disease, the role of senescence in chronic lung diseases, and how senescence impacts acute respiratory viral infections. Finally, we develop a potential framework for how senescence may contribute, both positively and negatively, to the pathophysiology of viral respiratory infections, including severe acute respiratory syndrome due to the coronavirus SARS-CoV-2.


Asunto(s)
Senescencia Celular , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Virosis/patología , Virosis/virología , Humanos , Pulmón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA